Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Thwaites Glacier in West Antarctica has been identified as a route to destabilization of the whole West Antarctic Ice Sheet, potentially leading to several meters of sea‐level rise. However, future evolution of Thwaites Glacier remains uncertain due to a lack of detailed knowledge about its basal boundary that will affect how its retreat proceeds. Here we aim to improve understanding of the basal boundary in the lower part of Thwaites Glacier by modeling the crustal structures that are related to the bed‐type distribution and therefore influence the basal slip. We combine long‐offset seismic, and gravity‐ and magnetic‐anomaly data to model the crustal structures along two 120 km lines roughly parallel to ice flow. We find a sedimentary basin 40 km in length in the along‐flow direction, with a maximum thickness of 1.7 0.2 km, and two mafic intrusions at 5–10 km depth that vary in maximum thickness between 3.8 and 8.6 km. The sedimentary basin and major mafic intrusions we modeled are likely related to the multi‐stage tectonic evolution of the West Antarctic Rift System. Thwaites Glacier flows across a tectonic boundary within our study site, indicating it flows across tectonically formed structures. The varying geology and resulting variations in bed types demonstrate the influence of tectonics on Thwaites Glacier dynamics.more » « less
-
Tinto, K (Ed.)Understanding the submarine environment around Greenland is critical for understanding the impacts of future changes in sea level on marine habitats and coastal infrastructures, as well as revealing the past physical processes that sculpted the landscape. Here we investigate the submarine signature of a geologic boundary between Precambrian basement and Cretaceous-Paleocene sandstone off the coast of Aasiaat, Greenland. The study builds upon previous research in Krawcyk et al., 2022, and uses new data from the Greenland Rising Project to compare geologic maps, analyze bathymetry data, and examine backscatter measurements to help contribute to a better understanding of the boundary. Observations of exposed bedrock, and our interpretation of pockmarks observed on the seafloor guide the location of the boundary and suggest that the boundary extends further south than previously recognized. Characterizing this boundary supports a better understanding of marine ecosystems in Greenland and can be valuable for future environmental management decisions. Further data collection and analysis is recommended to better determine and identify the boundary in the futuremore » « less
-
Abstract We present Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 °S. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. These efforts have filled notable gaps including in major mountain ranges and the deep interior of East Antarctica, along West Antarctic coastlines and on the Antarctic Peninsula. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica’s ice, providing new opportunities to interpret continental-scale landscape evolution and to model the past and future evolution of the Antarctic ice sheets.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract The landscape hidden beneath the Greenland Ice Sheet remains one of the most sparsely mapped regions on Earth, but offers a unique record of environmental conditions prior to and during widespread glaciation, and of the ice sheet's response to changing climates. In particular, subglacial valleys observed across Greenland may preserve geomorphological information pertaining to landscape and ice sheet evolution. Here we analyze the morphology of a subglacial valley network in northern Greenland using bed elevation measurements acquired during multi‐year airborne radio‐echo sounding surveys. Channel profile morphologies are consistent with a primarily fluvial origin of the network, with evidence for localized modification by ice and/or meltwater. Gravity and magnetic anomalies suggest that the spatial organisation of the valley network is influenced by regional‐scale geological structure, implying a long‐lived and well‐established hydrological system. We also document two knickzones in the valley longitudinal profile and terraces above the channel floor in the lower course of the network. These observations, combined with stream power modeling, indicate that northern Greenland experienced two episodes of relative base level fall during the Neogene (∼150 m at ca. 12–3.7 Ma and ∼380 m at ca. 8.2–2.8 Ma) that resulted in channel profile adjustment via incision and knickzone retreat. The timing of the inferred base level fall correlates with other onshore and offshore records of uplift, denudation, and/or relative sea level change, and we suggest that tectonic and/or mantle‐driven uplift played an important role in the genesis of the modern landscape of northern Greenland.more » « less
-
null (Ed.)Abstract. Ice shelves play a critical role in the long-termstability of ice sheets through their buttressing effect. The underlyingbathymetry and cavity thickness are key inputs for modelling future icesheet evolution. However, direct observation of sub-ice-shelf bathymetry istime-consuming, logistically risky, and in some areas simply not possible.Here we use new compilations of airborne and marine gravity, radar depthsounding, and swath bathymetry to provide new estimates of sub-ice-shelfbathymetry outboard of the rapidly changing West Antarctic Thwaites Glacierand beneath the adjacent Dotson and Crosson ice shelves. This region is ofspecial interest, as the low-lying inland reverse slope of the ThwaitesGlacier system makes it vulnerable to marine ice sheet instability, withrapid grounding line retreat observed since 1993 suggesting this process maybe underway. Our results confirm a major marine channel >800 mdeep extends tens of kilometres to the front of Thwaites Glacier, while theadjacent ice shelves are underlain by more complex bathymetry. Comparison ofour new bathymetry with ice shelf draft reveals that ice shelves formedsince 1993 comprise a distinct population where the draft conforms closelyto the underlying bathymetry, unlike the older ice shelves, which show a moreuniform depth of the ice base. This indicates that despite rapid basalmelting in some areas, these recently floated parts of the ice shelf are notyet in dynamic equilibrium with their retreated grounding line positions andthe underlying ocean system, a factor which must be included in futuremodels of this region's evolution.more » « less
-
We present here Bedmap3, the latest suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of Antarctica south of 60degS. Bedmap3 incorporates and adds to all post-1950s datasets previously used for Bedmap1 and Bedmap2, including 84 new aero-geophysical surveys by 15 data providers, an additional 52 million data points and 1.9 million line-kilometres of measurement. This has filled notable gaps in East Antarctica, including the South Pole and Pensacola basin, Dronning Maud Land, Recovery Glacier and Dome Fuji, Princess Elizabeth Land, plus the Antarctic Peninsula, West Antarctic coastlines, and the Transantarctic Mountains. Our new Bedmap3/RINGS grounding line similarly consolidates multiple recent mappings into a single, spatially coherent feature. Combined with updated maps of surface topography, ice shelf thickness, rock outcrops and bathymetry, Bedmap3 reveals in much greater detail the subglacial landscape and distribution of Antarctica's ice, providing new opportunities to interpret continental-scale landscape evolution and to model in detail the past and future evolution of the Antarctic ice sheets. Sponsored by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action group aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international scientific community. The associated Bedmap datasets are listed here: https://www.bas.ac.uk/project/bedmap/#datamore » « less
An official website of the United States government
